Schweizerische Eidgenossenschan
Confederation suisse
Confederaziun svizra

Eidgenossisches Departement for

 Eicgenossisches DepartementirWirtschatt, Biduung und Forschung WBF Schweizerische Maturitatskommission SMK

Ergänzungsprưfung Passerelle Berufsmaturitat/Fachmaturităt - universitäre Hochschulen Winter 2018

Naturwissenschaften, Teil Physik

Kand.-Nr.:	Erreichte Punktzahl:
Name, Vorname:	Note:
	Korrigierende(r):

Fach
Naturwissenschaften, Teil Physik

Dauer:

Zugelassene Hilfsmittel
Maximale Punktzahl:

30 Minuten

Eine Formelsammlung und ein Taschenrechner gemäss Weisungen 65 Punkte
Autoren:
René Weiss, Christoph Meier

Hinweise: 1. Antworten, Lösungsgang und Resultate sind direkt in die Broschüre zu schreiben.
2. Bitte unterstreichen Sie jeweils Ihr Resultat.
3. Sollten Sie mehr Platz als vorgesehen benötigen, ist dafur hinten eine leere Zusatzseite beigefügt. Machen Sie auf dem Aufgabenblatt unbedingt einen entsprechenden verbalen Hinweis.
4. Eigene Zusatzbläter dürfen nicht verwendet werden.
5. Eine formale Lösung muss nur gegeben werden, wo dies ausdrücklich verlangt ist. Der Lösungsweg muss ersichtlich sein, ein Resultat ohne Herleitung ergibt keine Der Losungsweg muss ersichtich sein, ein egesune Grössen enthalten.
6. Bei den numerischen Lōsungen muss der Rechenweg ebenfalls ersichtlich sein, auch wenn zur Berechnung ein Rechner verwendet wird - ein Resultat ohne Herleitung ergibt keine Punkte. Resultate müssen eine sinnvolle physikalische Einheit enthalten und eine sinnvolle Genauigkeit aufweisen (d.h. die richtige Anzah signifikanter Stellen). Für die Fallbeschleunigung g dürfen Sie $10 \mathrm{~m} / \mathrm{s}^{2}$ verwenden.
7. Verbale Antworten solien in klaren Sätzen in korrektem Deutsch gegeben werd Bemühen Sie sich in Ihrem eigenen Interesse um eine klare Darstellung und leserliche Schrift - Unleserliches und Unverständliches ergibt keine Punkte.
8. Die Serie umfasst 7 Aufgaben, das Punktemaximum beträgt 65 Punkte.
9. Zur Erreichung der Note 6 ist nicht die volle Punktzahl erforderlich.

1. Einer der schnellsten Aufzüge der Welt erreicht eine maximale Geschwindigkeit von $17 \mathrm{~m} / \mathrm{s} . \operatorname{In} 33$ bewegt sich die Liftkabine von A nach D (Figur 1):

- uf der Strecke AB beschleunigt sie in 10 s vom
- auf der Stecke $17 \mathrm{~m} / \mathrm{s}$
- die Strecke BC durchfährt sie anschliessend mit $17 \mathrm{~m} / \mathrm{s}$ in 13 s
- auf der Strecke CD bremst sie in 10 s von 17 m / s zum Stillstand ab

1.1 Wie lang ist die Strecke BC (nur numerisch)?

$$
S=v t=17 \pi \cdot 135 \cdot 221 \mathrm{~m}=0,22 k
$$

1.2 Auf der Strecke $A B$ beschleunigt die Liftkabine in 10 s gleichmässig auf $17 \mathrm{~m} / \mathrm{s}$.
1.2.1 Wie gross ist die Beschleunigung?
a) formal

$$
a=\frac{\Delta v}{t}=\frac{v}{\tau} \quad\left(v_{0}=0\right)
$$

b) numerisch

$$
i=\frac{17 \overline{5}}{105}=1,7 \overline{5}
$$

1.2.2 Wie lang ist die Strecke $A B$?
a) formal

$$
\begin{aligned}
& v^{2}=2 a s \\
& s=\frac{v}{2 a}=\frac{v \cdot t}{2}
\end{aligned}
$$

b) numerisch

$$
s=\frac{(1+\overline{3}) 10_{p}}{2}=85 \sim
$$

3 Auf der Strecke CD bremst die Littkabine in 10 s gleichmässig von $17 \mathrm{~m} / \mathrm{s}$ zum Stillstand ab .
1.3.1 Wie gross ist die Verzögerung (nur numerisch, mit kurzer Begründung)?

$$
a=-1,7 \underset{i}{=} \text { wie 1.2.1 c) mer su nicitiv }
$$

1.3.2 Wie lang ist die Strecke $C D$ (nur numerisch, mit kurzer Begründung)?

$$
\begin{aligned}
& \text { Quxdion wie 1.2.2. nu withich vichwailt } \\
& 85 \mathrm{~m}
\end{aligned}
$$

1.4 Wir betrachten die Zugkraft im Seil der Liftkabine (Figur 2). Diese hat eine Masse von $2.0 \cdot 10{ }^{3} \mathrm{~kg}$ jeweils die Grösse der Zugkraft im Seil.

1.4.1 Strecke BC (nur numerisch)

$$
\begin{aligned}
& a=0 \Rightarrow F_{G}=F_{\operatorname{dif}}=m s=20 \mathrm{kN} \\
& F_{e j t}=0
\end{aligned}
$$

1.4.2 Strecke AB (nur numerisch, mit kurzer Begründung)

$$
\begin{aligned}
& a=1.7=\underset{\operatorname{His}(}{\mathrm{sin}}=F_{6}+m a=23 \mathrm{kN} \\
& F_{-d f}=m_{a}=340 \mathrm{~N}
\end{aligned}
$$

1.4.3 Strecke $C D$ (nur numerisch)

$$
\begin{aligned}
& \text { Strecke CD (nur numerisch) } \\
& a \rightarrow F_{s i l}=F_{\sigma}+m=17 \mathrm{kN}
\end{aligned}
$$

2. Ein vereister Abhang wird fur ein Skirennen hergerichtet (Figur 3). Ein Helfer (Masse 80 kg) steht bei A .
Plolzzlich gleitet er aus; er rutscht den
Abhang hinunter und prallt bei B auf eine Abschrankung.

Hinweis: die Aufgaben 2.1, 2.2
sind voneinander unabhangig.
2.1

Mit welcher Geschwindigkeit triftt der Helfer auf die Abschrankung bei B,
keine Rhibung wirkt? keine Reibung wirkt?
a) Die Frage lässt sich mit Hilfe des Begriffs .Energie" beantworten.

$$
\begin{aligned}
& \text { Ohme mubin: a SgsckCossus Syof } \Rightarrow \\
& \text { Ensgce } A=\text { Emyi is }
\end{aligned}
$$

b) Berechnen Sie die gesuchte Geschwindigkeit formal.

$$
\begin{gathered}
m g h=\frac{1}{2} w v^{2} \\
v=\sqrt{\lg 4}
\end{gathered}
$$

Schweizerische Maturitatskommission SMK
Ergänzungsprüfung Passerelle 'Berufsmaturität/Fachmaturităt - universitäre Hochschulen
Ergänzungsprufung Passerele Peny
c) Berechnen Sie die gesuchte Geschwindigkeit numerisch.

$$
v=\sqrt{2 . \omega}=10 \sim=14 \frac{5}{5}
$$

2.2 Aus welcher Höhe müsste der Helfer frei fallen, um dieselbe Geschwindigke zu erreichen, die bei 2.1 errechnet wurde (nur numerisch)? Sie kōnnen die zu erreichen, Hôhe berechnen oder direkt eine Antwort mit verbaler Begründung

$$
\begin{aligned}
& \text { geben. } \\
& \text { Aus } 10 \text { (Enoraieshathy) } \\
& \text { gaduestuatio are 2. } 1
\end{aligned}
$$

3. Weil für alle Helfer rutschhemmende Kleidung vorgeschrieben ist, wirkt wăhrend des Hinuntergleitens eine bremsende Kraft von $2.0 \cdot 10^{2} \mathrm{~N}$ auf den Helfer. Mit welcher Geschwindigkeit trifft er auf die Abschrankung bei B ?
a) formal

$$
\begin{aligned}
& E A=E B+E_{R} \\
& w_{B}=\sum_{i}+\overline{F_{R}} \cdot s \\
& v=\sqrt{\operatorname{2g} 4-\frac{2 F_{R} s}{2}}
\end{aligned}
$$

- -

b) numerisch

$$
\begin{aligned}
V & =\sqrt{2 \cdot \omega \frac{1}{3} \cdot 10 \mathrm{~m}-\frac{2 \cdot 200 \mathrm{~W} \cdot 3}{80 \% g}} \\
& =7,1 \overline{\mathrm{~s}}
\end{aligned}
$$

Schweizerische Maturitätskommission SMK
 Ergänzungsprüfung Passerelle Berus
Naturwissenschaften, Teil Physik
3. Herr Müller hat ein kleines Boot mit der Masse $1.6 \cdot 10^{2} \mathrm{~kg}$. Es (einer Metallegierung (Figur 4).
3.1 Sein Boot ist nach einem Sturm gesunken und liegt auf dem Seegrund (Figur 5)

3.1.1 Wie gross ist die Gewichtskraft des Boots?
a) formal

$$
F_{0}=m s
$$

b) numerisch

$$
F_{0}=160 \mathrm{is} \cdot 10 \frac{\mathrm{~N}}{\mathrm{y}}=1,6 \mathrm{KN}
$$

3.1.2 Wie gross ist die Auftriebskraft des Boots?
a) formal

$$
F_{A}=V_{B} S_{w} \cdot g
$$

$$
\text { b) numerisch } F_{\alpha}=60 \mathrm{gn}^{3} \cdot \frac{1 / \mathrm{S}}{\mathrm{an}}, \operatorname{le} \frac{\mathrm{~N}}{\mathrm{y}}=600 \mathrm{~N}=0,60 \mathrm{kN}^{1 \mathrm{P}}
$$

3.1.3 Wie gross ist die Kraft, die nôtig ist, um das Boot vom Seegrund weg zu heben (nur numerisch)?

$$
F=F_{F}-F_{A}=1,0 \mathrm{kN}
$$

Schweizerische Maturitätskommission SMK
Ergänzungsprûfung Passerelle 'Berufsmaturitä//Fachmaturitāt - universitäre Hochschulen Ergänzungsprưfung Passerelle Be

32 Um zu verhindern, dass sein Boot nochmais Um zu verhindern, dass sein Boot nochmals
untergeht, will Herr Müller es unsinkbar machen. Dazu bringt er im Boot harte Schaumstoffstück an, deren Volumen insgesamt $1.1 \cdot 10^{2} \mathrm{dm}^{3}$ beträgt (Figur 6).
Wie gross darf die gesamte Masse dieser
Schaumstoffstücke maximal sein, damit das Boot nicht untergehen kann?
3.2.1 Beschreiben Sie Ihre Uberiegungen zur Lösung dieser Frage.

$$
\begin{aligned}
& \text { Das Volumen ih Sol aumste if eruest } \\
& \text { usàhhod Auftrieb. Diese wass dias Boot } \\
& \text { nd be eignes buvidit oushaiden, ranimiut } \\
& \text { us cin tulti's de Broter }
\end{aligned}
$$

3.2.2 Lósen Sie das Problem formal

$$
\begin{aligned}
& F_{G, s}+F_{6, B}=F_{A, S}+F_{A, B} \\
& m_{s} g+m_{B} \cdot g=V_{S} \cdot g w \cdot g+V_{B} \cdot g w g \\
& m_{s}=\left(V_{S}+V_{B}\right) \rho W-m_{B}
\end{aligned}
$$

3.2.3 Lösen Sie das Problem numerisch

$$
\begin{aligned}
& \text { Lösen Sie das Problem numerisch } \\
& m_{s}=\left(110 \mathrm{~km}^{3}+60 \mathrm{dm}^{2}\right) \cdot 1 \frac{18}{\mathrm{dm}^{2}}-160 \mathrm{IS} \\
& m_{s}=1018
\end{aligned}
$$

4. Um grössere Wassermengen zu erhitzen, wurde in der Bronze-Zeit (d.h. vor etwa 3'000 bis wurdo Jahren) folgende Methode verwendet: in einem Feuer wurden Steine erhitzt und dann in eine mit Lehm ausgekleidete Mulde mit Wasser geworfen (Figur 7).

Bei einem Versuch ergab sich Folgendes: in eine mit Lehm ausgekleidete Mulde wurden $2.0 \cdot 10^{2}$ I Wasser von $20^{\circ} \mathrm{C}$ geschüttet. In einem lodernden
Moldeuer neben der Mulde wurden Steine auf $8.0 \cdot 10^{2}{ }^{\circ} \mathrm{C}$ erhitzt und dann ins Holzfeuer neben der Mulde wurden Steine auf $8.0 \cdot 10^{2}{ }^{\circ}$ erhitzt und dann Wasser befördert. Nach kurzer Zeit begann das Wasser zu sieden -

Schweizerische Maturitätskommission SMK
4.1 Wie gross war die Masse der verwendeten Steine? Die spezifische Wärmekapazität der Steine ist $1.0 \cdot 10^{3} \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$. Wir nehmen an, dass keine Wärme an die Umgebung abgegeben wird.
a) formal

$$
\begin{gathered}
\Delta Q_{A b}=\Delta Q_{A u t} \\
c_{s} m_{s}\left(T_{1}-T_{2}\right)=c_{-} \rho_{w} V_{w}\left(T_{2}-T_{3}\right) \\
m_{s}=\frac{c_{w} \rho_{w} V_{w}\left(T_{1}-T_{3}\right)}{c_{s}\left(T_{1}-T_{2}\right)}
\end{gathered}
$$

b) numerisch

$$
\frac{4182 \frac{d}{w x} \cdot 1 \frac{k}{2^{3}} \cdot 200 \mathrm{dn} \cdot(100-20) k}{1000 \frac{n^{2}}{n^{2}} \cdot(800-100) k}
$$

$$
m 6=97 k
$$

4.2 Welche Wärmeübertragungsart trug hauptsăchlich dazu bei, dass die Steine im Wasser nicht nur ihre unmittelbare Umgebung, sondern die gesamte Wassermenge erhitzten? Begründen Sie Ihre Antwort:
Es handelte sich um is
4.3 Ausgrabungen zeigen, dass in der Bronze-Zeit Steine mit Massen der Grössenordnung 10 kg verwendet wurden
4.3.1 Wieso wurden keine .grossen" Steine von z. B. 50 kg verwendet? (Hinweis: „Weil sie zu schwer waren" ist nicht die gesuchte Antwort)
Erwärme domert un laye
4.3.2 Wieso wurden keine kleinen, z. B. eiergrossen Steine verwendet?

$$
\begin{aligned}
& \text { Obe Jlädu/V:lus wa gropldaln } 2 n \\
& \text { sinu } A_{\mathrm{L}} \text { Wäncabsol } \rightarrow \text { re dan } \rho / \mathrm{m}
\end{aligned}
$$

5. In einem Ferienhaus ist ein 80 -Liter-Boiler installiert. Auf dem Typenschild ist $230 \mathrm{~V}, 2.2 \mathrm{~kW}$ - vermerkt
5.1 Wie lange dauert das Erwärmen von 80 । Wasser von $18^{\circ} \mathrm{C}$ auf $60^{\circ} \mathrm{C}$, wenn 85% der elektrischen Leistung dem Wasser zugeführt wird?
Nur numerisch, Resultat in der Einheit ,Stunden' angeben

$$
\begin{aligned}
\Delta E & =\Delta Q=c p V \Delta I=P \cdot t \cdot n \\
t & =\frac{c \rho V\left(T_{2}-T_{1}\right)}{P \cdot n} \\
& =\frac{\left.4182 \frac{7}{5 i c} \cdot 1 \frac{14}{2}, 80 \mathrm{~m}^{2}\right) 44 \mathrm{c}}{2209,10,85}=2,14
\end{aligned}
$$

5.2 Wie gross ist der Strom, der bei eingeschaltetem Boiler fliesst?
a) formal

$$
\begin{aligned}
& P=u \cdot] \\
& J=\frac{\rho}{u}
\end{aligned}
$$

$$
J=\frac{2200 W}{23 . V}+96 A
$$

5.3 Wie gross ist der elektrische Widerstand des Heizelements im Boiler?
a) formal

$$
R=\frac{u}{j}=\frac{u}{\rho}
$$

$$
\Omega=\frac{(2300)^{2}}{2200}=24 \Omega
$$

5.4 Das Heizelement im Boiler besteht aus drei gleichen, parallel geschalteten Widerständen, die an verschiedenen Stellen im Boiler montiert sind. Wie gross ist der elektrische Widerstand eines solchen Widerstands? Beschreiben Sie Ihre Uberlegungen zu dieser Frage. Zu welchem Resultat gelangen Sie?
Parailelschath: $\frac{1}{R_{G}}=\frac{1}{R_{1}}+\ldots=\frac{3}{Q_{1}}$

$$
R_{-1}=3 R_{0}=72 \Omega
$$

6. Eine Batterie hat einen Pluspol und
einen Minuspol (Figur 8).

Eine Batterie ist in einem Stromkreis eingebaut. Erklären Sie die Bedeutung inres Pluspols,
6.1.2 wenn man von "Elektronen" spricht.

$$
1 P
$$

6.2 Erklären Sie entsprechend die Bedeutung ihres Minuspols,
6.2.1 wenn man von .Strom" spricht.

S.O

wenn man von "Elektronen" spricht.

S. 0 .

6.3 Eine Steckdose im Haushalt hat auch zwei Pole, allerdings sind diese nicht als Pluspol bzw. Minuspol gekennzeichnet. Aus welchem Grund ist das so?
In de statidex liugt Widret spang an, Pluswd linus wrchen 50war a de

St kands.

$$
\begin{aligned}
& \text { Elelltrain side uocghis igéciter, Jtiom } \\
& \text { abo ven limes un plaspol. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 6.1.1 wenn man von .Strom spricht. } \\
& \text { Strom ogeht va 'Plus' hik 'linus', } \\
& \text { relosst un Bolteric aso in Pluspol. }
\end{aligned}
$$

Schweizerische Maturitatskommission SMK
Ergänzungsprüfung Passerelle 'Berufsmaturitat/Fachmaturităt - universitäre Hochschulen Ergänzungsprưung Passerelle Bei

64 Ein Glühbimchen wird an eine Batterie angeschlossen (Figur 9). Umgangssprachlich wird angeschlossen (Figur 9). Imgangssprach ein Bügeleisen, ein Heizlüfter etc. - als .Stromverbraucher" bezeichnet.

Figur 9

6.4.1 Was lăsst sich über die Stromstärke im Punkt B im Vergleich zur Stromstärk im Punkt A sagen? Begründen Sie Ihre Antwort.

$$
\begin{aligned}
& \text { In 2ime Sosicnschalky ist ive Shor } \\
& \text { steirhe ineall geiro, orso anchiot } \begin{array}{l}
\text { ond }
\end{array}
\end{aligned}
$$

6.4.2 Das Wort „Stromverbrauch" ist aus den Wortern „Strom" und „Verbrauch usammengesetzt. Kommentieren Sie dies und machen Sie gegebenenfalls einen - in Ihren Augen - besseren Vorschlag (mit Begründung). $\quad{ }^{\prime}$ robracel/2
 tis fliosst wime toviet wur luedl ungid, mie herous fli., bt
ENver bont wore 'Enexgiereb,auclur'!
eigertlich Enagienutiod
7. Im „Wellness-Bereich" eines Hotels befindet sich ein Swimmingpool

71 Oberhalb des Swimmingpools ist eine Lampe installiert (Figur 10). Wir betrachten deren Lichtkegel
Er ist weit geöffnet, sein .Offnungswinkel" ist 120°

Strahlen des Lichtkegels
eingezeichnet. Skizzieren
eingezeichnet. Skizzieren
Sie in Figur 11 den weiteren
Verlauf dieser Strahlen A, B
hre Lösung stichwortartig.

B, C

$$
\alpha>0^{\prime} \rightarrow \text { Bralog : } \beta<\alpha \mid \gamma=\sigma
$$

7.2 Skizzieren Sie in Figur 10 auf Seite 10 den weiteren Verlauf des ganzen Lichtkegels.
7.2 Am Boden des Swimmingpools ist an einer anderen Stelle eine gleiche Lampe installiert (Figur 12).
Figur 12

7.2.1 In Figur 13 sind drei Strahlen des Lichtkegels eingezeichnet. Skizzieren Sie in Figur 13 den weiteren Verlauf dieser drei Strahlen und beschreiben Sie Ihre Losung stichwortartig.

Figur 13

7.2.2 Skizzieren Sie in Figur 12 den weiteren Verlauf des ganzen Lichtkegels.
2.2 B: B>ech van Lotw: $\gamma>$ Grent Gritad Jolaln/Gkkion $\rightarrow \gamma$

48,8

Schweizerische Maturitatskommission SMK
Ergänzungsprifung Passerelle 'Berufsmaturitat/Fachmaturităt - universitäre Hochschulen' Ergänzungsprufung Passerele $\mathrm{Naturwissenschaften}$,

Zusatzseite

Zusatzile N otizen werden nur bewertet, wenn sie klar einer Aufgabe zugeordnet werden können Zusatziche Notizen werden nur bewertet, wenn sie kiar einer Aurgabe zuger deshalb unbedingt die Aufgabennummer und den Aufgabenteil an und machen Sie auf dem betreffenden Aufgabenblatt einen entsprechenden verbalen Hinweis

